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Notes on Linear Regression

Introduction
In these notes we will present a brief discussion of the methods and formulas for fitting a straight 
line to approximately linear data using a least squares fit. Much of the material is based on 
Taylor's An Introduction to Error Analysis1.  Sample code in Python is presented. 

Simple Averages
We begin by looking at a familiar concept, the ordinary average.  We will look at it in a slightly 
complicated manner that will illustrate the method we use below for fitting a straight line to 
linear data, a linear regression.  Intuitively, we know that an average is “in the middle” of a set 
of numbers.  If a group of values are all supposed to represent the same thing then, in some 
sense, the average represents the “best” value for the group.  Here we will give an explicit 
meaning to ”in the middle” or  “best”.  

If we have N points x i or pairs of points x i , yi , where i=1. . N , and functions f x  or g  x , y  
we can define the average of the functions over the points as

〈 f 〉≡ 1
N ∑

i=1

N

f xi  (1)

〈 g 〉≡ 1
N ∑i=1

N

g  xi , y i  (2)

The average, 〈 f 〉 , is a linear function of its argument: 
 

〈a f b g 〉=a 〈 f 〉b 〈 g 〉  (3)

where a and b are constants.  Note that the ordinary average of N points x i is given by 〈 x 〉 in this 
notation.

An important property of the average 〈 x 〉 can be derived by defining the sum of the squares of 
the distances from the individual points to a particular point. This is called the variance,  x

2 x  , 
of a set of points, x i , from a value x  and is defined as 

1 An excellent reference for this material is An Introduction to Error Analysis: The Study of Uncertainties in  
Physical Measurements, Second Edition by John R. Taylor, University Science Books, Sausalito, CA. 1997. 
ISBN 0-935702-75-X.
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 x
2 x ≡〈x−x2〉  (4)

If we expand the square and use linearity we get

 x
2 x =〈 x2〉−2x 〈 x 〉x2  (5)

The value of x that minimizes  x
2 x  can be found by differentiating Equation 5 with respect 

to x and setting the result equal to zero.

∂ x
2 x 
∂ x

=−2 〈 x 〉2x=0  (6)

which gives the familiar result that x=〈 x 〉 and allows the simplification of Equation 5, often 
used in calculations, that

 x
2=〈 x2〉−〈 x 〉2  (7)

Note that none of these results would change if we used the “sample mean” definition, with N  
replaced by N−1 , instead of the “population mean”.

This calculation illustrates two important points.  First, it gives a very specific meaning to the 
concept that the average is the middle or best value.  The average is the value that minimizes the 
variance, or the sum of the squared differences between the individual values and average.  In 
other words, the average is a least squares fit to the data set.  

Second, it illustrates the technique of using simple differentiation to find the value that 
minimizes the variance.  We will use this same method below to find the “middle” or “best” 
straight line to fit a group of roughly linear points. 

Linear Regression
The problem of a linear fit to data is to find the equation of the straight line, y=m xb  , that is 
the “best” fit to a set of N pairs of data points x i , y i .  Following the method we used above for 
averages, we will look at the distance between our data points and a straight line and pick a slope 
and intercept that minimizes the sum of the squares of those distances.  This will be a “least 
squares fit” or a linear regression.

We begin by defining the two simple averages 
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x≡〈 x 〉 & y≡〈 y 〉 (8)

the “variance” of the x and the y data

 x
2≡〈 x−x 2〉=〈x2〉−〈 x 〉2  (9)

 y
2≡〈 y−y 2〉=〈 y2〉−〈 y 〉2  (10)

  
and the “covariance” (discussed in Quality of the Fit below) 

 xy≡〈 x−x y−y〉=〈 xy 〉−〈 x〉 〈 y 〉  (11)

where the second forms of Equations 9-11 are derived using Equation 8. Finally, we define the 
standard error of the estimate (squared) as,

ln
2 m , b=〈 y−mx−b 2〉  (12)

This is the sum of the squares of the difference between the actual points y i and those 
predicted by the equation m x ib . We define the “best fit” as the line, defined by m and b , 
that minimizes ln

2 m , b .   To find the values of m and b that minimize we differentiate with 
respect to m and b and set the results equal to zero.  Taking the partial derivatives

∂ln
2 m , b
∂b

=−2〈 y−mx−b 〉=0  (13)

∂ln
2 m , b
∂m

=−2〈 x  y−mx−b〉=0  (14)

we find that

〈 y 〉=m〈 x 〉b  (15)

〈 xy 〉=m 〈x2〉b 〈 x 〉  (16)

Using these two equations, we can solve for m  and b as

m=
〈 xy 〉−〈 x 〉 〈 y 〉
〈 x2〉−〈 x 〉2 =

 xy

 x
2  (17)
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b=y−m x  (18)

With these m and b, some simple algebra shows that

ln
2 =〈 y2〉−m〈 xy 〉−b 〈 y 〉  (19)

Finally, it can be shown2 that the standard errors in the slope and intercept are given by

m
2 = 1

 x
2

ln
2

N  (20)

b
2=

〈 x2〉
 x

2

 ln
2

N  (21)

The application of these equations in an actual fragment of code to perform a linear repression 
and return the regression coefficients will be presented below in the section Linear Regression 
using Python. However, before we present the actual code we will display another use for the 
covariance  xy and discuss the way to measure the quality of our fit.

Quality of the Fit
In the physical sciences it is usually self-evident when a data set of (x,y) points is related by a 
linear relation y=mx+b, ether from simple inspection of the data or from theoretical 
considerations.  In this case, finding the slope and intercept of is clearly justified.  In more 
complex situations one might try to fit a quadratic or an exponential, but the existence of a 
relation between the x and y values is not in question.   

In the biological or social sciences this is often not the case.  Frequently, when presented with a 
data set, the first question that must be addressed is whether or not there is a relation between the 
two variables.  Does a change in one predict a change in the other? Can you compute a predicted 
value of y from an x value with any confidence?  In statistics, one asks if the two variables are 
correlated. In order to discuss this question we will define two important statistical measures, the 
covariance3,  xy  of a data set and the closely related correlation coefficient, r.  

The covariance was defined in Equation 11 as:

 xy≡〈 x−x y−y〉=〈 x y 〉−〈 x 〉 〈 y 〉  (22)

2 See: Taylor, 1997, op cit, p. 188.
3 Note that some authors use  xy

2 for covariance.  Following Taylor, I will not use the superscript “2” since the 
quantity is not positive definite as any true square must be.
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where x=〈 x 〉 and y=〈 y 〉 . The correlation coefficient, r, is defined as:

r=
 xy

 x
2 y

2
 (23)

where  x
2 and  y

2 were defined in Equations 9 and 10 above. It can be shown4 that
∣ xy∣≤ x y from which it follows that r 2≤1 . The correlation coefficient is a normalized 

covariance.

The intuitive meaning of covariance and the correlation coefficient is rather easy to see.  If, when 
x increases y tends to also increase then a value of x that is greater than average is likely to 
accompany a value of y that is also greater than average or vice-versa and x≥x will tend to 
occur when y≥y and x≤x when y≤ y. In ether case, the contribution to  xy will be 
positive and the overall average will also be positive.  If an increase in x goes with a decrease in 
y then the contributions will tend to be negative.  If there is no relation between x and y then an x 
value above the x average x=〈 x 〉 will be just as likely to go with a y value that is above y
as one that is below and the average will tend towards zero.  The extreme case of perfect 
correlation is data pairs which are all related by the same linear relation, y i=m x ib , in which 
case it is easy to show that r 2=1 . In summary, uncorrelated data will produce a correlation 
coefficient that approaches zero while data with a good underlying linear relation with have an

r 2  near unity.

Linear Regression using Python
Here is a code fragment that illustrates the formulas above with real code using the open-source 
programming language Python and the SciPy library of software for mathematics, science, and 
engineering.

linear_regression(x,y) is based on linregress from the SciPy stats module with the 
addition of code to return errors on the slope and intercept and removal of the code to find the 
two-tailed probability.  The input form is also much less flexible.  SciPy and its companion 
NumPy are Python modules for fast scientific and numerical computing using n-dimensional 
arrays.  SciPy uses NumPy for speed on large arrays.  For further information see 
http://www.scipy.org/ .

4 See: Taylor, 1997, op cit, p. 224.  This is a form of the Schwartz Inequality.
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One important feature of this code is that it never subtracts two large numbers that might be 
nearly equal.  However, it does require that you have all the data in several arrays in memory 
when you perform the regression. 

Another Computational Method
In certain computational or programming environments it may be very useful to keep a running 
sum of numbers rather than storing them all and doing all the computations at the end.  You also 
may not know in advance how many data points you will be handling. For example, certain 
hand-held calculators can easily be programmed to store six cumulative sums but do not handle 
large arrays easily. With this issue in mind, we present an alternate method of computing our 
regression coefficients.  
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def linear_regression(x,y):
    """Calculates a regression line on two arrays, x and y.
    Input:
        (x,y) a pair of NumPy arrays
    Returns: 
        slope, intercept, r, stderr-of-the-estimate,
        stderr-of-the-slope, stderr-of-the-intercept
    Warning:
        This is not production code.  You should test for a zero in the
        denominator of r and set r = 0 if it occurs.  You should also set
        r=1 if r>1 due to round-off error and check that len(x)=len(y).
    """
    from scipy import mean, add, math, stats
    n = len(x)                       # the length of the array x
    xmean = mean(x)                  # the average of the array x
    ymean = mean(y)
    x_xm,y_ym = x-xmean, y-ymean     # term-by-term array subtraction
    sig2x = stats.ss(x_xm)/n         # ss(x) returns the sum of the squares
    sig2y = stats.ss(y_ym)/n
    sumx2 = stats.ss(x)
    sigxy = add.reduce(x_xm*y_ym)/n  # sum of the term-by-term array product
    r = sigxy/math.sqrt(sig2x*sig2y)
    slope = sigxy/sig2x
    intercept = ymean - slope*xmean
    err_estimate = math.sqrt((1-r*r)*sig2y)
    err_slope = err_estimate/math.sqrt(n*sig2x)
    err_intercept = err_estimate*math.sqrt(sumx2/sig2x)/n
    return (slope, intercept, r, err_estimate, 
            err_slope, err_intercept)

Text Box 24: Code to program a linear regression
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First, make the following six definitions: 

N=∑ 1 , x=∑ x i , y=∑ yi (25)

x2=∑ xi
2 , y2=∑ y2 , xy=∑ xi y i  (26)

Note that each of these sums can be computed as data is collected.  We also define the auxiliary 
quantity

x=N  x2− x
2 (27)

With these definitions, we can rewrite the results for the average and the standard deviation as:

x=
x

N
(28)

 x
2=

x

N 2 (29)

There are two other similar formulas for y and  y
2 .  The slope and intercept of a linear fit to the 

data of the form y=mxb become

m=N  xy−x  y /x (30)

b=x2 y− x xy /x (31)

The standard deviation from the fitted line, ln
2 , is given by

ln
2 = 1

N ∑
i=1

N

 yi−mxi−b2= 1
N

 y2−mxy−b y  (32)

and the errors in the slope and intercept become

m=ln N /x (33)

b= ln x2/x (34)

One final warning on implementation.  In a numerical or computer environment these 
computations will have round-off errors.  In particular, for large N, Equations 30 and 31 for m 
and b will involve taking the difference between very large numbers in both the numerator and 
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the denominator.  This is a very hazardous activity. If the precision of the numerical calculation 
is not good enough, large machine errors can creep in.   In this case the alternative algorithms 
presented in Equations 17 and 18 and used in the code fragment on page 6 should be considered.
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