
Name: _____ Date: ____

- 1. Vectors \vec{A} and \vec{B} lie in the xy plane. We can deduce that $\vec{A} = \vec{B}$ if:
 - A) $A_x^2 + A_y^2 = B_x^2 + B_y^2$
 - $\mathbf{B)} \quad A_x + A_y = B_x + B_y$
 - C) $A_x = B_x$ and $A_y = B_y$
 - $D) A_y/A_x = B_y/B_x$
 - E) $A_x = A_y$ and $B_x = B_y$
- 2. In the diagram, \vec{A} has magnitude 12 m and \vec{B} has magnitude 8 m. The *x* component of $\vec{A} + \vec{B}$ is about:

- A) 5.5 m
- B) 7.6 m
- C) 12 m
- D) 14 m
- E) 15 m
- 3. The vector \vec{V}_3 in the diagram is equal to:

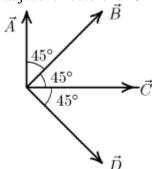
- A) $\vec{V}_1 \vec{V}_2$
- B) $\vec{V}_1 + \vec{V}_2$
- C) $\vec{V}_2 \vec{V}_2$
- D) $\vec{V}_1 \cos \theta$
- E) $\vec{V}_1/(\cos\theta)$

- 4. A certain vector in the xy plane has an x component of 4 m and a y component of 10 m. It is then rotated in the xy plane so its x component is doubled. Its new y component is about:
 - A) 20 m
 - B) 7.2 m
 - C) 5.0 m
 - D) 4.5 m
 - E) 2.2 m
- 5. If $\vec{A} = (2 \text{ m})\hat{i} (3 \text{ m})\hat{j}$ and $\vec{B} = (1 \text{ m})\hat{i} (2 \text{ m})\hat{j}$, then $\vec{A} 2\vec{B} = (1 \text{ m})\hat{i} (2 \text{ m})\hat{j}$
 - A) $(1m)\hat{j}$
 - B) $(-1m)\hat{j}$
 - C) $(4 \text{ m})\hat{i} (7 \text{ m})\hat{j}$
 - D) $(4 \text{ m})\hat{i} + (1 \text{ m})\hat{j}$
 - E) $(-4 \,\mathrm{m})\,\hat{i} + (7 \,\mathrm{m})\,\hat{j}$
- 6. In the expressions $\vec{r} = x\hat{i} + y\hat{j}$ for the position vector of a particle and $\vec{v} = v_x\hat{i} + v_y\hat{j}$ for its velocity:
 - A) the unit vector \hat{i} might have a unit of meters
 - B) \hat{i} and \hat{j} are both variables
 - C) i represents a different vector in the two expressions
 - D) \hat{i} and \hat{j} are parallel to each other
 - E) none of the above
- 7. The angle between $\vec{A} = (25 \,\mathrm{m}) \,\hat{\mathbf{i}} + (45 \,\mathrm{m}) \,\hat{\mathbf{j}}$ and the positive x axis is:
 - A) 29°
 - B) 61°
 - C) 151°
 - D) 209°
 - E) 241°

- 8. Let $\vec{A} = (2 \text{ m}) \hat{\mathbf{i}} + (6 \text{ m}) \hat{\mathbf{j}} (3 \text{ m}) \hat{\mathbf{k}}$ and $\vec{B} = (4 \text{ m}) \hat{\mathbf{i}} + (2 \text{ m} \hat{\mathbf{j}} + (1 \text{ m}) \hat{\mathbf{k}}$. The vector difference $\vec{D} = \vec{A} \vec{B}$ is:
 - A) $(6m)\hat{i} + (8m)\hat{j} (2m)\hat{k}$
 - B) $(-2 \,\mathrm{m})\,\hat{i} + (4 \,\mathrm{m})\,\hat{j} (4 \,\mathrm{m})\,\hat{k}$
 - C) $(2m)\hat{i} (4m)\hat{j} + (4m)\hat{k}$
 - D) $(8m)\hat{i} + (12m)\hat{j} (3m)\hat{k}$
 - E) none of these
- 9. A vector has a component of 10 m in the +x direction, a component of 10 m in the +y direction, and a component of 5 m in the +z direction. The magnitude of this vector is:
 - A) zero
 - B) 15 m
 - C) 20 m
 - D) 25 m
 - E) 225 m
- 10. The angle between $\vec{A} = (-25 \,\mathrm{m})\,\hat{i} + (45 \,\mathrm{m})\,\hat{j}$ and the positive x axis is:
 - A) 29°
 - B) 61°
 - C) 119°
 - D) 151°
 - E) 209°
- 11. The vectors \vec{a} , \vec{b} , and \vec{c} are related by $\vec{c} = \vec{b} \vec{a}$. Which diagram below illustrates this relationship?

Δ

C



D

- A) A
- B) B
- C) C
- D) D
- E) None of these

- 12. If $|\vec{A} + \vec{B}|^2 = A^2 + B^2$, then:
 - A) \vec{A} and \vec{B} must be parallel and in the same direction
 - B) \vec{A} and \vec{B} must be parallel and in opposite directions
 - C) either \vec{A} or \vec{B} must be zero
 - D) the angle between \vec{A} and \vec{B} must be 60°
 - E) none of the above is true
- 13. A vector in the *xy* plane has a magnitude of 25 m and an *x* component of 12 m. The angle it makes with the positive *x* axis is:
 - A) 26°
 - B) 29°
 - C) 61°
 - D) 64°
 - E) 241°
- 14. Let $\vec{V} = (2.00 \,\mathrm{m}) \,\hat{\mathbf{i}} + (6.00 \,\mathrm{m}) \,\hat{\mathbf{j}} (3.00 \,\mathrm{m}) \,\hat{\mathbf{k}}$. The magnitude of \vec{V} is:
 - A) 5.00 m
 - B) 5.57 m
 - C) 7.00 m
 - D) 7.42 m
 - E) 8.54 m
- 15. If $|\vec{A} + \vec{B}| = A + B$ and neither \vec{A} nor \vec{B} vanish, then:
 - A) \vec{A} and \vec{B} are parallel and in the same direction
 - B) \vec{A} and \vec{B} are parallel and in opposite directions
 - C) the angle between \vec{A} and \vec{B} is 45°
 - D) the angle between \vec{A} and \vec{B} is 60°
 - E) \vec{A} is perpendicular to \vec{B}
- 16. Let $\vec{A} = (2 \text{ m})\hat{i} + (6 \text{ m})\hat{j} (3 \text{ m})\hat{k}$ and $\vec{B} = (4 \text{ m})\hat{i} + (2 \text{ m})\hat{j} + (1 \text{ m})\hat{k}$. The vector sum $\vec{S} = \vec{A} + \vec{B}$ is:
 - A) $(6m)\hat{i} + (8m)\hat{j} (2m)\hat{k}$
 - B) $(-2 \,\mathrm{m})\,\hat{i} + (4 \,\mathrm{m})\,\hat{j} (4 \,\mathrm{m})\,\hat{k}$
 - C) $(2m)\hat{i} (4m)\hat{j} + (4m)\hat{k}$
 - D) $(8m)\hat{i} + (12m)\hat{j} (3m)\hat{k}$
 - E) none of these

- 17. A vector of magnitude 3 CANNOT be added to a vector of magnitude 4 so that the magnitude of the resultant is:
 - A) zero
 - B) 1
 - C) 3
 - D) 5
 - E) 7
- 18. Four vectors $(\vec{A}, \vec{B}, \vec{C}, \vec{D})$ all have the same magnitude. The angle θ between adjacent vectors is 45° as shown. The correct vector equation is:

- A) $\vec{A} \vec{B} \vec{C} + \vec{D} = 0$
- $\mathbf{B}) \quad \vec{B} + \vec{D} \sqrt{2}\vec{C} = 0$
- C) $\vec{A} + \vec{B} = \vec{B} + \vec{D}$
- D) $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$
- E) $(\vec{A} + \vec{C})/\sqrt{2} = -\vec{B}$
- 19. We say that the displacement of a particle is a vector quantity. Our best justification for this assertion is:
 - A) displacement can be specified by a magnitude and a direction
 - B) operating with displacements according to the rules for manipulating vectors leads to results in agreement with experiments
 - C) a displacement is obviously not a scalar
 - D) displacement can be specified by three numbers
 - E) displacement is associated with motion
- 20. If $\vec{A} = (6 \text{ m})\hat{\mathbf{i}} (8 \text{ m})\hat{\mathbf{j}}$ then $4\vec{A}$ has magnitude:
 - A) 10 m
 - B) 20 m
 - C) 30 m
 - D) 40 m
 - E) 50 m

Answer Key

- 1. C
- 2. C
- 3. C
- 4. B
- 5. A
- 6. E
- 7. B
- 8. B
- 9. B
- 10. C
- 11. D
- 12. E
- 13. C
- 14. C
- 15. A
- 15. A
- 17. A
- 18. B
- 19. B
- 20. D