Name:	Date:

- **1.** A wire carrying a large current *i* from east to west is placed over an ordinary magnetic compass. The end of the compass needle marked "N":
 - A) points north
 - **B**) points south
 - C) points east
 - **D**) points west
 - E) continually rotates like an electric motor

2. Suitable units for the magnetic permeability constant μ_0 are:

A) tesla

- **D**) kilogram \cdot ampere/meter
- **E**) tesla \cdot meter/ampere
- C) weber/meter

B) newton/ampere²

- **3.** Two long straight wires enter a room through a door. One carries a current of 3.0 A into the room while the other carries a current of 5.0 A out. The magnitude of the path integral $\oint \vec{B} \cdot d\vec{s}$ around the door frame is:
 - A) $2.5 \times 10^{-6} \,\mathrm{T} \cdot \mathrm{m}$ D) $1.0 \times 10^{-5} \,\mathrm{T} \cdot \mathrm{m}$ B) $3.8 \times 10^{-6} \,\mathrm{T} \cdot \mathrm{m}$ E) none of these
 - **C**) $6.3 \times 10^{-6} \,\mathrm{T} \cdot \mathrm{m}$
 - **4.** Two long straight wires are parallel and carry current in opposite directions. The currents are 8.0 and 12 A and the wires are separated by 0.40 cm. The magnetic field at a point midway between the wires is:

A) 0 B) 4.0×10^{-4} T C) 8.0×10^{-4} T D) 12×10^{-4} T E) 20×10^{-4} T

- ____ **5.** A coulomb of charge is:
 - A) one ampere per second
 - **B**) the quantity of charge that will exert a force of 1 N on a similar charge at a distance of 1 m
 - C) the amount of current in each of two long parallel wires, separated by 1 m, that produces a force of 2×10^{-7} N/m
 - **D**) the amount of charge that flows past a point in one second when the current is 1 A
 - E) an abbreviation for a certain combination of kilogram, meter and second

- **_6.** A constant current is sent through a helical coil. The coil:
 - A) tends to get shorter
 - **B**) tends to get longer
 - C) tends to rotate about its axis
 - D) produces zero magnetic field at its center
 - E) none of the above
- **7.** A long straight cylindrical shell has inner radius R_i and outer radius R_o . It carries current *i*, uniformly distributed over its cross section. A wire is parallel to the cylinder axis, in the hollow region ($r < R_i$). The magnetic field is zero everywhere outside the shell ($r > R_o$). We conclude that the wire:
 - A) is on the cylinder axis and carries current *i* in the same direction as the current in the shell
 - **B**) may be anywhere in the hollow region but must be carrying current *i* in the direction opposite to that of the current in the shell
 - **C)** may be anywhere in the hollow region but must be carrying current *i* in the same direction as the current in the shell
 - **D**) is on the cylinder axis and carries current *i* in the direction opposite to that of the current in the shell
 - E) does not carry any current
 - **8.** A long straight wire carrying a 3.0 A current enters a room through a window 1.5 m high and 1.0 m wide. The path integral $\oint \vec{B} \cdot d\vec{s}$ around the window frame has the value:
 - A) $0.20 \text{ T} \cdot \text{m}$
 - **B)** $2.5 \times 10^{-7} \text{ T} \cdot \text{m}$
 - **C)** $3.0 \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m}$

- **D**) $3.8 \times 10^{-6} \text{ T} \cdot \text{m}$ **E**) none of these
- **9.** Electrons are going around a circle in a counterclockwise direction as shown. At the center of the circle they produce a magnetic field that is:

A) into the page B) out of the page C) to the left D) to the right E) zero

- **10.** Lines of the magnetic field produced by a long straight wire carrying a current are:
 - A) in the direction of the current
 - **B**) opposite to the direction of the current
 - C) radially outward from the wire
 - D) radially inward toward the wire
 - E) circles that are concentric with the wire
- **11.** In Ampere's law, $\oint \vec{B} \cdot d\vec{s} = \mu_0 i^{\text{enc}}$, the symbol $d\vec{s}$ is:
 - A) an infinitesimal piece of the wire that carries current *i*
 - **B**) in the direction of \vec{B}
 - C) perpendicular to \vec{B}
 - **D**) a vector whose magnitude is the length of the wire that carries current i^{enc}
 - E) none of the above
- **12.** If the magnetic field \vec{B} is uniform over the area bounded by a circle with radius *R*, the net current through the circle is:
 - **A)** 0 **B)** $2\pi RB/\mu_0$ **C)** $\pi R^2 B/\mu_0$ **D)** $RB/2\mu_0$ **E)** $2RB/\mu_0$
- **13.** In Ampere's law, $\oint \vec{B} \cdot d\vec{s} = \mu_0 i^{\text{enc}}$, the direction of the integration around the path:
 - A) must be clockwise
 - **B**) must be counterclockwise
 - C) must be such as to follow the magnetic field lines
 - D) must be along the wire in the direction of the current
 - E) none of the above
- **14.** The magnetic field at any point is given by $\vec{B} = A\vec{r} \times \hat{k}$, where \vec{r} is the position vector of the point and A is a constant. The net current through a circle of radius R, in the xy plane and centered at the origin is given by: **A**) $\pi A R^2/\mu_0$ **B**) $2\pi A R/\mu_0$ **C**) $4\pi A R^3/3\mu_0$ **D**) $2\pi A R^2/\mu_0$ **E**) $\pi A R^2/2\mu_0$
- **15.** The magnetic field \vec{B} inside a long ideal solenoid is independent of:
 - A) the current
 - **B**) the core material
 - **C**) the spacing of the windings
 - D) the cross-sectional area of the solenoid
 - **E**) the direction of the current

- **16.** A long straight cylindrical shell has inner radius R_i and outer radius R_o . It carries a current *i*, uniformly distributed over its cross section. A wire is parallel to the cylinder axis, in the hollow region ($r < R_i$). The magnetic field is zero everywhere in the hollow region. We conclude that the wire:
 - A) is on the cylinder axis and carries current *i* in the same direction as the current in the shell
 - **B**) may be anywhere in the hollow region but must be carrying current *i* in the direction opposite to that of the current in the shell
 - **C)** may be anywhere in the hollow region but must be carrying current *i* in the same direction as the current in the shell
 - **D**) is on the cylinder axis and carries current *i* in the direction opposite to that of the current in the shell
 - E) does not carry any current
- **17.** A hollow cylindrical conductor (inner radius = a, outer radius = b) carries a current *i* uniformly spread over its cross section. Which graph below correctly gives *B* as a function of the distance *r* from the center of the cylinder?

18. Two parallel wires carrying equal currents of 10 A attract each other with a force of 1 mN. If both currents are doubled, the force of attraction will be:
A) 1 mN
B) 4 mN
C) 0.5 mN
D) 0.25 mN
E) 2 mN

____19. Magnetic field lines inside the solenoid shown are:

- A) clockwise circles as one looks down the axis from the top of the page
- **B**) counterclockwise circles as one looks down the axis from the top of the page
- **C**) toward the top of the page
- **D**) toward the bottom of the page
- **E**) in no direction since B = 0
- **20.** The magnetic field a distance 2 cm from a long straight current-carrying wire is 2.0×10^{-5} T. The current in the wire is:
 - A) 0.16 A B) 1.0 A C) 2.0 A D) 4.0 A E) 25 A

Answer Key

1.	В	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 9
2.	E	
_	Origin:	Chapter 30- Magnetic Fields Due to Currents, 1
3.	A	
4	Origin:	Chapter 30- Magnetic Fields Due to Currents, 32
4.	E Origin:	Chapter 20 Magnetic Fields Due to Currents 15
5	D	Chapter 50- Magnetic Fields Due to Currents, 15
5.	Origin [.]	Chapter 30- Magnetic Fields Due to Currents 2
6.	A	Chapter 50 Magnetie Fields Due to Carrents, 2
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 24
7.	D	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 37
8.	D	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 31
9.	A	
10	Origin:	Chapter 30- Magnetic Fields Due to Currents, 3
10.	E Origin:	Chapter 20 Magnetic Fields Due to Currents 7
11	F	Chapter 50- Magnetic Fields Due to Currents, 7
11.	Origin:	Chapter 30- Magnetic Fields Due to Currents 29
12.	A	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 33
13.	E	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 30
14.	D	
1 =	Origin:	Chapter 30- Magnetic Fields Due to Currents, 34
15.	D Origina	Chapter 20 Magnetic Fields Due to Currents 20
16	F	Chapter 50- Magnetic Fields Due to Currents, 59
10.	Origin:	Chapter 30- Magnetic Fields Due to Currents 38
17.	C	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 35
18.	В	
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 19
19.	С	
•	Origin:	Chapter 30- Magnetic Fields Due to Currents, 41
20.	C Onicia	Chamton 20 Magnetic Fields Des to Comment 12
	Origin:	Chapter 30- Magnetic Fields Due to Currents, 12