Name:	Date	2:

- **1.** A series *RL* circuit is connected to an emf source of angular frequency ω . The current:
 - A) leads the applied emf by $\tan^{-1}(\omega L/R)$ D) leads the applied emf by $\tan^{-1}(\omega R/L)$
 - **B**) lags the applied emf by $\tan^{-1}(\omega L/R)$ **E**) is zero
 - C) lags the applied emf by $\tan^{-1}(\omega R/L)$
- 2. A current of 10 A in a certain inductor results in a stored energy of 40 J. When the current is changed to 5 A in the opposite direction, the stored energy changes by:
 A) 20 J B) 30 J C) 40 J D) 50 J E) 60 J
- **3.** In a purely inductive circuit, the current lags the voltage by:
 - A) zero

D) three-fourths of a cycle

B) one-fourth of a cycleC) one-half of a cycle

- **E**) one cycle
- **4.** An *LC* circuit has a capacitance of 30 μ F and an inductance of 15 mH. At time t = 0 the charge on the capacitor is 10 μ C and the current is 20 mA. The maximum charge on the capacitor is:

A) 8.9 μ C **B)** 10 μ C **C)** 12 μ C **D)** 17 μ C **E)** 24 μ C

- **5.** A resistor, an inductor, and a capacitor are connected in parallel to a sinusoidal source of emf. Which of the following is true?
 - A) The currents in all branches are in phase.
 - **B**) The potential differences across all branches are in phase.
 - **C)** The current in the capacitor branch leads the current in the inductor branch by one-fourth of a cycle
 - **D**) The potential difference across the capacitor branch leads the potential difference across the inductor branch by one-fourth of a cycle.
 - **E**) The current in the capacitor branch lags the current in the inductor branch by one-fourth of a cycle.

6. The graphs show the total electromagnetic energy in two RLC circuits as functions of time. Which of the following statements might be true?

- A) Circuit 1 has a smaller resistance and a larger inductance
- **B**) Circuit 1 has a larger resistance and a smaller inductance
- C) Circuit 1 has the same resistance and a larger inductance
- **D**) Circuit 1 has a larger resistance and a larger capacitance
- E) Circuit 1 has the same resistance and a smaller capacitance
- 7. An LC circuit has an inductance of 20 mH and a capacitance of 5.0 μ F. At time t = 0the charge on the capacitor is 3.0 μ C and the current is 7.0 mA. The total energy is:
 - **A)** 4.1×10^{-7} J **D**) 1.4×10^{-6} J **E**) 2.8×10^{-6} J
 - **B**) 4.9×10^{-7} J
 - **C)** 9.0×10^{-7} J
- 8. An LC circuit has an oscillation frequency of 10^5 Hz. If the capacitance is 0.1 μ F, then the inductance must be about:
 - **A)** 10 mH **B)** 1 mH **C)** 25 μH **D)** 2.5 μH **E)** 1 pH
- 9. When the amplitude of the oscillator in a series *RLC* circuit is doubled:
 - A) the impedance is doubled
 - **B**) the voltage across the capacitor is halved
 - **C)** the capacitive reactance is halved
 - **D**) the power factor is doubled
 - E) the current amplitude is doubled
- 10. A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If T is the period of the resulting oscillations, the next time after t = 0 that the energy stored in the magnetic field of the inductor is a maximum is:

A) T B) T/4 C) T/2 D) T E) 2T

- **11.** A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero, but the capacitor is charged. If *T* is the period of the resulting oscillations, the next time after t = 0 that the energy stored in the electric field of the capacitor is a maximum is:
 - A) T B) T/4 C) T/2 D) T E) 2T
- **12.** An *RLC* series circuit has L = 100 mH and $C = 1 \ \mu$ F. It is connected to a 1000-Hz source and the source emf is found to lead the current by 75°. The value of *R* is: **A)** 12.6 Ω **B)** 126 Ω **C)** 175 Ω **D)** 1750 Ω **E)** 1810 Ω
- **13.** An inductance *L* and a resistance *R* are connected in series to an ideal battery. A switch in the circuit is closed at time 0, at which time the current is zero. The energy stored in the inductor is a maximum:
 - A) just after the switch is closed
 - **B**) at the time t = L/R after the switch is closed
 - C) at the time t = L/R after the switch is closed
 - **D**) at the time t = 2L/R after the switch is closed
 - E) a long time after the switch is closed
- **14.** An *RLC* circuit has an inductance of 25 mH and a capacitance of 5.0 μ F. The charge on the capacitor does NOT oscillate but rather decays exponentially to zero. The resistance in the circuit must be:
 - A) greater than or equal to $20,000\Omega$
 - **B**) less than $20,000\Omega$ but greater than $10,000\Omega$
 - C) less than $10,000\Omega$ but greater than $5,000\Omega$
 - **D**) less than $5,000\Omega$ but greater than 0
 - **E**) 0

15. In the diagram, the function y(t) = y_m sin (ωt) is plotted as a solid curve. The other three curves have the form y(t) = y_m sin (ωt + φ), where φ is between -π/2 and +π/2. Rank the curves according to the value of φ, from the most negative to the most positive.

- 16. An ac generator producing 10 V (rms) at 200 rad/s is connected in series with a 50-Ω resistor, a 400-mH inductor, and a 200-μF capacitor. The rms voltage (in volts) across the inductor is:
 A) 2.5 B) 3.4 C) 6.7 D) 10.0 E) 10.8
- **17.** The rapid exponential decay in just a few cycles of the charge on the plates of capacitor in an *RLC* circuit might be due to:
 - **A**) a large inductance

D) a large resistance

B) a large capacitance

E) a small resistance

C) a small capacitance

18. The rms value of a sinusoidal voltage is $V_0/\sqrt{2}$, where V_0 is the amplitude. What is the rms value of its fully rectified wave? Recall that $V_{\text{rect}}(t) = |V(t)|$.

- **19.** An *RLC* circuit has a resistance of 200Ω and an inductance of 15 mH. Its oscillation frequency is 7000 Hz. At time t = 0 the current is 25 mA and there is no charge on the capacitor. After five complete cycles the current is:
 - A) zero

D)	$2.3 \times$	10^{-3} A
E)	$2.5 \times$	10 ⁻² A

- **B**) 1.8×10^{-6} A C) 2.1×10^{-4} A
- **20.** In a sinusoidally driven series *RLC* circuit the current lags the applied emf. The rate at which energy is dissipated in the resistor can be increased by:
 - A) decreasing the capacitance and making no other changes
 - **B**) increasing the capacitance and making no other changes
 - C) increasing the inductance and making no other changes
 - D) increasing the driving frequency and making no other changes
 - E) decreasing the amplitude of the driving emf and making no other changes

Answer Key

1.	В	
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 49
2.	В	
•	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 5
3.	B	Charter 22. Electrometric Oreilletics and Alternative Connect 49
4	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 48
4.	D Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current 34
5.	B	Chapter 55 Electroninghetic Osemations and Atternating Carrent, 54
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 71
6.	A	
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 37
7.	D	
0	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 33
8.	C Oni aires	Chanton 22. Electromegratic Oscillations and Alternating Comput. 18
0	Origin:	Chapter 55- Electromagnetic Oscillations and Alternating Current, 18
9.	Drigin.	Chapter 33- Electromagnetic Oscillations and Alternating Current 61
10.	B	Chapter 55 Electromagnetic Openhations and Enternating Carrent, of
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 12
11.	C	
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 13
12.	В	
10	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 65
13.	E Onicinu	Chapter 22 Electromagnetic Oscillations and Alternating Current 2
14		Chapter 55- Electromagnetic Oscillations and Alternating Current, 2
14.	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 39
15.	D	empter of Zieen emignene obernations and internating Carrent, of
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 64
16.	Е	
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 78
17.	D	
10	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 41
10.	D Origin:	Chapter 33 Electromagnetic Oscillations and Alternating Current, 73
19.	C	Chapter 55- Electromagnetic Oscinations and Anternating Current, 75
_ /•	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current. 38
20.	A	1
	Origin:	Chapter 33- Electromagnetic Oscillations and Alternating Current, 68