Name: \qquad Date: \qquad

1. If the magnetic field in a plane electromagnetic wave is along the y axis and its component is given by $B^{\max } \sin (k x-\omega t)$, in SI units, then the electric field is along the z axis and its component is given by:
A) $\left(c B^{\max }\right) \cos (k x-\omega t)$
B) $-\left(c B^{\max } / c\right) \cos (k x-\omega t)$
C) $-\left(c B^{\max } / c\right) \sin (k x-\omega t)$
D) $B^{\max } \cos (k x-\omega t)$
E) $\left(c B^{\max } / c\right) \sin (k x-\omega t)$
2. Which of the following types of electromagnetic radiation travels at the greatest speed in vacuum?
A) Radio waves
D) Gamma rays
B) Visible light
E) All of these travel at the same speed
C) X rays
\qquad 3. The Sun is about $1.5 \times 10^{11} \mathrm{~m}$ away. The time for light to travel this distance is about:
A) $4.5 \times 10^{18} \mathrm{~s}$
B) 8 s
C) 8 min
D) $8 \mathrm{hr} \quad$ E) 8 yr
\qquad 4. The order of increasing wavelength for blue (b), green (g), red (r), and yellow (y) light is:
A) r, y, g, b
B) r, g, y, b
C) g, y, b, r
D) b, g, y, r E) b, y, g, r
\qquad 5. If the electric field in a plane electromagnetic wave is along the y axis and its component is given by $E^{\max } \sin (k x+\omega t)$, in SI units, then the magnetic field is along the z axis and its component is given by:
A) $\left(E^{\max } / c\right) \cos (k x+\omega t)$
B) $-\left(E^{\max } / c\right) \cos (k x+\omega t)$
C) $-\left(E^{\max /} / c\right) \sin (k x+\omega t)$
D) $E^{\max } \cos (k x+\omega t)$
E) $\left(E^{\max } / c\right) \sin (k x+\omega t)$
\qquad 6. A sinusoidal electromagnetic wave with a maximum electric field of $100 \mathrm{~V} / \mathrm{m}$ is incident normally on a surface with an area of $1 \mathrm{~cm}^{2}$ and is completely absorbed. The energy absorbed in 10 s is:
A) 1.3 mJ
B) 13 mJ
C) 27 mJ
D) 130 mJ
E) 270 mJ
\qquad 7. The electric field in unpolarized light:
A) has no direction at any time
B) rotates rapidly
C) is always parallel to the direction of propagation
D) changes direction randomly and often
E) remains along the same line but reverses direction randomly and often
\qquad 8. The theoretical upper limit for the frequency of electromagnetic waves is:
A) just slightly greater than that of red light
B) just slightly less than that of blue light
C) the greatest x-ray frequency
D) none of the above (there is no upper limit)
E) none of the above (but there is an upper limit)
3. The product $\mu_{0} \varepsilon_{0}$ has the same units as:
A) $(\text { velocity })^{2}$
B) $(\text { velocity })^{1 / 2}$
C) $1 /$ velocity
D) $1 /$ velocity ${ }^{2}$
E) $1 /$ velocity ${ }^{1 / 2}$
4. The light intensity 10 m from a point source is $1000 \mathrm{~W} / \mathrm{m}^{2}$. The intensity 100 m from the same source is:
A) $1000 \mathrm{~W} / \mathrm{m}^{2}$
B) $100 \mathrm{~W} / \mathrm{m}^{2}$
C) $10 \mathrm{~W} / \mathrm{m}^{2}$
D) $1 \mathrm{~W} / \mathrm{m}^{2}$
E) $0.1 \mathrm{~W} / \mathrm{m}^{2}$
5. Radio waves of wavelength 300 m have a frequency of:
A) $10^{-3} \mathrm{kHz}$
B) 500 kHz
C) 1 MHz
D) 9 MHz
E) 108 kHz
6. Select the correct statement:
A) ultraviolet light has a longer wavelength than infrared
B) blue light has a higher frequency than x rays
C) radio waves have higher frequency than gamma rays
D) gamma rays have higher frequency than infrared waves
E) electrons are a type of electromagnetic wave
7. In a stack of three polarizing sheets the first and third are crossed while the middle one has its axis at 45° to the axes of the other two. The fraction of the intensity of an incident unpolarized beam of light that is transmitted by the stack is:
A) $1 / 2$
B) $1 / 3$
C) $1 / 4$
D) $1 / 8$
E) 0
8. An unpolarized beam of light has intensity I_{0}. It is incident on two ideal polarizing sheets. The angle between the axes of polarization of these sheets is θ. Find θ if the emerging light has intensity $I_{0} / 4$:
A) $\sin ^{-1}(1 / 2)$
B) $\sin ^{-1}(1 / \sqrt{5})$
C) $\cos ^{-1}(1 / 2)$
D) $\cos ^{-1}(1 / \sqrt{2})$
E) $\tan ^{-1}(1 / 4)$
9. Polarization experiments provide evidence that light is:
A) a longitudinal wave
D) some type of wave
B) a stream of particles
E) nearly monochromatic
C) a transverse wave
10. In a plane electromagnetic wave in vacuum, the ratio $E^{\max } / B^{\max }$ of the field maxima in SI units is:
A) the speed of light
D) $\sqrt{2}$
B) an increasing function of frequency
E) $1 / \sqrt{2}$
C) a decreasing function of frequency
11. The dimensions of $\vec{S}=\left(1 / \mu_{0}\right) \vec{E} \times \vec{B}$ are:
A) $\mathrm{J} / \mathrm{m}^{2}$
B) J / s
C) W / s
D) $\mathrm{W} / \mathrm{m}^{2}$
E) $\mathrm{J} / \mathrm{m}^{3}$
\qquad 18. Of the following human eyes are most sensitive to:
A) red light
B) violet light
C) blue light
D) green light
E) none of these (they are equally sensitive to all colors)
12. Radio waves differ from visible light waves in that radio waves:
A) travel slower
D) have a lower frequency
B) have a higher frequency
E) require a material medium
C) travel faster
13. Consider: radio waves (r), visible light (v), infrared light (i), x-rays (x), and ultraviolet light (u). In order of increasing frequency, they are:
A) r, v, i, x, u
B) $\mathrm{r}, \mathrm{i}, \mathrm{v}, \mathrm{u}, \mathrm{x}$
C) i, r, v, u, x
D) i, v, r, u, x
E) r, i, v, x, u

Answer Key

1. E

Origin: Chapter 34- Electromagnetic Waves, 19
2. E

Origin: Chapter 34- Electromagnetic Waves, 8
3. C

Origin: Chapter 34- Electromagnetic Waves, 6
4. D

Origin: Chapter 34- Electromagnetic Waves, 53
5. C

Origin: Chapter 34- Electromagnetic Waves, 20
6. B

Origin: Chapter 34- Electromagnetic Waves, 32
7. D

Origin: Chapter 34- Electromagnetic Waves, 44
8. D

Origin: Chapter 34- Electromagnetic Waves, 11
9. D

Origin: Chapter 34- Electromagnetic Waves, 2
10. C

Origin: Chapter 34- Electromagnetic Waves, 29
11. C

Origin: Chapter 34- Electromagnetic Waves, 13
12. D

Origin: Chapter 34- Electromagnetic Waves, 51
13. D

Origin: Chapter 34- Electromagnetic Waves, 48
14. D

Origin: Chapter 34- Electromagnetic Waves, 47
15. C

Origin: Chapter 34- Electromagnetic Waves, 40
16. A

Origin: Chapter 34- Electromagnetic Waves, 18
17. D

Origin: Chapter 34- Electromagnetic Waves, 24
18. D

Origin: Chapter 34- Electromagnetic Waves, 54
19. D

Origin: Chapter 34- Electromagnetic Waves, 9
20. B

Origin: Chapter 34- Electromagnetic Waves, 52

